下面以非周期矩形信号为例,来研究一下非周期信号的频谱。
一、非周期矩形脉冲信号的离散谱
对于周期矩形信号,保持脉宽τ不变,当周期T趋于无穷大时,周期矩形信号将变成非周期矩形脉冲信号,如图所示。
换句话说,非周期矩形脉冲信号可以看成是周期矩形信号的周期趋于无穷大得到的。
根据周期矩形信号傅里叶系数表达式:
T趋于无穷大时,n也趋于无穷大,因此频谱的谱线间隔和长度都将趋近于零,如图所示。
这给非周期信号的频谱分析带来了很大麻烦。
有没有什么办法可以解决这给问题呢?
前面我们分析周期矩形信号的频谱时,发现这样一个规律:周期每扩大一倍,谱线数量也扩大一倍,谱线间隔和谱线长度都会减小一半。设想一下:如果我们用谱线间隔去除谱线长度会怎么样呢?二者的商不会随周期的增大而变化。这就引出了连续谱。
二、非周期矩形脉冲信号的连续谱
对于周期矩形信号来讲,谱线的长度等于
,谱线的间隔等于基波频率
,二者的商就等于:
。如果以
为底边,画一个宽为
、面积为
的矩形,
就是该矩形的高,如图所示.
把周期矩形信号所有的
都用矩形面积表示出来,并将所有矩形顶端连接起来,将得到一条阶梯状折线。下面看一下这条阶梯状折线。先来推导一下
表达式。
由周期矩形信号傅里叶系数表达式:
得:
将:
代入,得
也就是说:
的取值就是对τ sinc(τf)的平顶采样,采样间隔为
。
将幅度为1、脉宽τ=0.5、周期分别为1、2、4的周期矩形信号的
阶梯状折线和离散谱画在一起,如图所示。
很明显,随着周期的增大,阶梯状折线逐渐逼近τ sinc(τf)这条曲线。可以想象:当τ→∞时,周期矩形信号演变为非周期矩形脉冲信号,二者将完全重合。
由此引出定义:幅度为1、脉宽为τ的非周期矩形脉冲信号的连续频谱是:X(f)=τ sinc(τf)
幅度为1、脉宽τ=0.5的矩形脉冲信号的连续谱如图所示。
|